Weighted Iterative Operator-Splitting Methods and Applications
نویسندگان
چکیده
The subject of our research is to solve accurately ODEs, which appear in mathematical models arising from several physical processes. For this purpose we develop a new class of weighted iterative operator splitting methods. We present applications to systems of linear ODEs, which might contain also stiff parameters. The benefit of the proposed method is demonstrated with regard to convergence results and comparison to analytical solutions. We provide improved results and convergence rates in comparison with classical operator splitting methods.
منابع مشابه
Higher order operator splitting methods via Zassenhaus product formula: Theory and applications
In this paper, we contribute higher order operator-splitting method improved by Zassenhaus product. We apply the contribution to classical and iterative splitting methods. The underlying analysis to obtain higher order operator-splitting methods is presented. While applying the methods to partial differential equations, the benefits of balancing time and spatial scales are discussed to accelera...
متن کاملConsistency of Iterative Operator-Splitting Methods: Theory and Applications
In this paper we describe a different operator-splitting method for decoupling complex equations with multi-dimensional and multiphysical processes for applications for porous media and phase-transitions. We introduce different operator-splitting methods with respect to their usability and applicability in computer codes. The error-analysis for the iterative operator-splitting methods is discus...
متن کاملIterative operator-splitting methods for unbounded operators: Error analysis and examples
In this paper we describe an iterative operator-splitting method for unbounded operators. We derive error bounds for iterative splitting methods in the presence of unbounded operators and semigroup operators. Here mixed applications of hyperbolic and parabolic type are allowed and discussed in the applications. Mixed experiments are applied to ordinary differential equations and evolutionary Sc...
متن کاملIterative operator-splitting methods for nonlinear differential equations and applications of deposition processes
In this article we consider iterative operator-splitting methods for nonlinear differential equations. The main feature of the proposed idea is the embedding of Newton’s method for solving the split parts of the nonlinear equation at each step. The convergence properties of such a mixed method are studied and demonstrated. We confirm with numerical applications the effectiveness of the proposed...
متن کاملProjected non-stationary simultaneous iterative methods
In this paper, we study Projected non-stationary Simultaneous It-erative Reconstruction Techniques (P-SIRT). Based on algorithmic op-erators, convergence result are adjusted with Opial’s Theorem. The advantages of P-SIRT are demonstrated on examples taken from to-mographic imaging.
متن کامل